
thickness of the frost on the initial section, at a distance l, and the average thickness 
of the layer; 5" = 616~; L = ll~ ~. 
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FILTRATION OF A MAGNETIC FLUID IN A DEFORMABLE POROUS MEDIUM 

N. G. Taktarov UDC 537.84 

The equations of motion of a magnetizing fluid are obtained in a deformable non- 
magnetic porous medium. 

Filtration of a magnetic fluid in nondeformable porous media was examined in [i, 2]. 
Derivation of the equations of magnetic fluid filtration in a deformable porous matrix con- 
sisting of deformable grains that are displaceable relative to each other is of interest. 

It is assumed that an inhomogeneous magnetizing fluid fills the pore space entirely, 
i.e., the medium is saturated; there are no phase transitions associated with absorption 
(desorption) of the solid ferromagnet particles on the pore surface. The equations of fluid 
motion in a porous medium are obtained by local volume averaging [3] of the microequations of 
fluid motion in the pores, the Maxwell equation for the magnetic field in the pores and the 
matrix, as well as the equations of porous matrix deformation, with thermal expansion of the 
grains, from which the matrix consists, and the relative grain displacement taken into 
account. The magnetic properties of the medium as a whole (matrix + fluid) are characterized 
by the effective magnetic permittivity of the medium. The interphasal heat transfer be- 
tween the liquid and solid phases is taken into account in the averaged heat conduction equa- 
tions for the fluid and porous matrix. 

The following relationships [3] 

(i) < V~f~ > = Vi < f~ > + ~ < n~i f~ > ~,  < Ot f~ > = Ot < f~ > -- ~ < n~i u ~ f= > ~ .  

are used to average the microequations. 
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The microequations of the fluid motion in the pores, the deformation equations of the 
porous matrix, and also the boundary conditions on the interphasal surface are written in 
the form [4-6]: 

Ot p~ v~i = - -  VhP~ v~i v~ + Vk P~ + O~ gi, 

Ot p~ + Vh Po~ v~ = O, V~ B~ = O, e ~i~ V~ H,zh = O, 

B~k = H~h + 4xM~k,  

1 
[31~h = - -  Pl gih "+" Hli B l h +  ~lik, 

4~ 

i[ ] 
OM 

Pl = PO1 q- ---g--- ~- M - -  p dH, 
o J ~  T,H 

(2) 

"qih = 2~heuk, elik = (I/2)(Vi vlh § Vh riO, 

dT~ Vh p~ c~ ~ : Vh • T~, 
dt 

Peih ~-" ~'2 gihe2n -~- 2H~ e'qh - -  ~2T KS gih ( T 2 - -  To) "q- ~ H2i H2h 2 

d~ bo~ 
e2ih = (1/2)(Vi lhh + Vh h2~), v2~-  - -  , 

dt 

{ B . }  = o, { H ~ }  = o, (v~} = o, 

{Pihnk} = 0, {T} = 0, {• ~ viT} = 0. 

The e q u a t i o n s  i n  w h i c h  t h e  q u a n t i t i e s  a r e  d e n o t e d  w i t h  t h e  s u b s c r i p t  1 r e f e r  t o  t h e  
l i q u i d  p h a s e ,  and  w i t h  t h e  s u b s c r i p t  2 t o  t h e  s o l i d  p h a s e ,  a nd  w i t h  t h e  s u b s c r i p t  a (~ = 
1;  2) to  b o t h  p h a s e s .  S i n c e  t h e  m a t r i x  i s  a s sumed  n o n m a g n e t i c ,  we s h o u l d  s e t  Mak = 0 .  The 
difference in the specific heats for constant pressure and volume is not taken into account 
in (2) and henceforth. Summation is over repeated subscripts. We neglect the magnetocaloric 
effect as well as the work of the internal forces in the heat influx equations for the liquid 
and solid phases. Since the deformations within the grain (but not the relative displacements 
of the grain) are small, we neglect the convective term in the substantial derivative (i.e., 
da/dt ~ 3/3t) as well as the first term in the right side of the momentum equation for the 
solid phase, which is the convective momentum transport. The equations of state of both 
phases should also be appended to (2). 

Taking the average, with respect to the phases, according to (i), of the momentum equations 
for both phases (2) and combining them, with the boundary conditions (2) taken into account, 
we find the momentum equation for the mixture (matrix + fluid) 

^ 

01 ("11 < 01 ) 1 < Vli> 1 ~- hi2 / 92 > 2 < V2i > 2) = - -  Vh 1721 < Pl > 1 < Dli > I < UIk > 1 - -  Vh m l  < Pl > 1 < ~)li •1 k > 1 -~ 

~- Vh(1771 (, ,Ohl�91 ) I-~- 1722 < p~i ) 2) -J- ff~i (L~I (. Ot ) 1 ~- t'~?2 ( P 2 )  2)" ( 3 )  

Here  O x i = V l ~ - - < v ~ > ,  i s  t h e  f l u c t u a t i o n  o f  t h e  q u a n t i t y ,  i . e . ,  i t s  d e v i a t i o n  f r o m  t h e  mean 
value. Furthermore, we neglect the second term in the right side of (3), which is the fluc- 
tuating momentum transport. 

We write the averaged momentum equation for the liquid phase in the form 

0t Hll ( Pl ) 1 ( ~)li ) 1 : - -  Vh 1771 ( Pl ) i ( Uli ) 1 ( Uhl ) 1~- ( 4 )  

+ R2~ + V h ~  -. m~ < Pl > 1 g~, 

Ollh = 171"1 ( Plih ) a, R~Xe = Or~ ( plihn] ) 12. 

Here  R=~ i i s  a v e c t o r  g o v e r n i n g  t h e  f o r c e  e f f e c t  o f  t h e  p h a s e  2 on t h e  p h a s e  1 p e r  u n i t  
vo lume  of  m i x t u r e ;  t h e  t e n s o r  O~ik d e t e r m i n e s  t h e  s t r e s s  a c t i n g  on  p h a s e  1 on  t h e  s u r f a c e  of  
a c e r t a i n  m i x t u r e  v o l u m e .  
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We find the momentum equation for the solid phase by subtracting the momentum equation 
for the liquid phase (4) from the momentum equation for the mixture (3) and after some 
manipulation we can write 

~t m~ < p2 > ~ < ~ > ~ = V ~  + V~ m~ < p ~  > 1 - -  ~ + m~ ( ~ > ~ g~, (5 )  

~eih = m2 ( < P2f~ > ~ - -  < Plih > 1). 

Here g e i k  i s  the  e f f e c t i v e  s t r e s s  t e n s o r  d e s c r i b i n g  the  f o r c e  i n t e r a c t i o n  be tween  the  m a t r i x  
g r a i n s  b e c a u s e  o f  t h e i r  c o n t i g u i t y .  

Taking the  a v e r a g e  o f  the  m i c r o d e f o r m a t i o n  t e n s o r  e~ ik  w i t h  r e s p e c t  t o  phase  2, we have  

E~i~ = e~i~ + < e~h ) ~, (6 )  

where E~ik and aeik are the macrodeformation tensors and effective deformations, respectively 
[3]. The tensor eeik is related to the grain displacement with respect to each other. 

According to the Maxwell equations, for a nonelectrically conductive medium (2) 

m Am 

+ z ~  < M .  >~ < B[n~ > ~ + m~ < MivjH~ >1 + a~ < ~.j  ni > ~ + V~m~ < ~ j  > 1- (7) 

Here p~ is the magnetic addition to the pressure, described by the third term in the right 
side of the seventh formula (2). 

Furthermore, in application to (7) we make the following assumptions: i) we neglect 
the change in viscosity qx in the averaging volume element; 2) we consider the magnetic per- 
mittivity of the fluid not to differ very radically from 1 (as holds in sufficiently strong 
fields), 3) we assume that the relationships 

�9 ] ^ [d1<v~>1 a <v~>~ (8) 
G12 < POlnli > 12=--Xmi/~1n21~12 ' dt  O~ ' 

hold for the general case of a statistically inhomogeneous and anisotropic medium. 

In connection with assumption 2) j we neglect the term in (7) that contains the product 
of the magnetization fluctuations by the field. 

The integral over the interphasal surface o12<~ini~>12 in (7) is different from zero 
only when the vector fields H~ i and, therefore, also <HI~>I are inhomogeneous in space be- 
cause the fluctuation evidently equals zero for a homogeneous field. It hence follows that 
the integral mentioned above is a function of the argument Vk<H1z>1 that vanishes together 
with the argument. Expanding this integral in a series and retaining first order terms in 
the expansion (under the assumption that <HII>I varies slowly in space), we have 

~12 < H17 nli ) 12 = mira2 ai ih l  V h ( H {  ~ 1 + �9 �9 . (9) 

Here the  t e n s o r  a j i k l  c h a r a c t e r i z e s  t h e  p r o p e r t i e s  o f  the  medium. Analogous  e x p a n s i o n s  can 
be written down also for the remaining integrals of the fluctuations over the interphasal 
surfaces. The quantity ~l~T|i~l is written in the form 

ml < TliJ > I ~ ~i [Vi ~1 < UIJ > i + Vim1 < ~i~ > 1] ~- ~i ~12 < ~ig ~l] + nlj ~i~ > 12. 

We assume that the effective stress tensor is related to the effective strain tensor 
by the generalized Hooke's law 

~ u  = m~ Au~ ~1 (i0) 

Here the  e f f e c t i v e  s t r e s s  t e n s o r  s h o u l d  be e x p r e s s e d  i n  terms of  the  m a c r o d e f o r m a t i o n  t e n s o r  
(6) t h a t  d e s c r i b e s  the  m a t r i x  d e f o r m a t i o n  b e i n g  o b s e r v e d .  

The a v e r a g e d  c o n t i n u i t y  e q u a t i o n  f o r  t he  phase  a has the  form 

O tin= ( p= )a  + V~m~ ( 9 = ) =  < v~>a = 0  (11) 
in the absence of phase transitions. 
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rN~e equations of state for both phases are 

Ps = Ps (P0~, T~). 
Here Poa i s  the  p r e s s u r e  in  phase  a w i t h o u t  a m a g n e t i c  f i e l d .  We d e f i n e  the  p r e s s u r e  i n  a 
s o l i d  body as f o l l o w s  

= __ | h k 
Po~ ( / 3 )  p02n = Ks [e2k - -  ~2T (T~ - -  To)]. 

For s m a l l  changes  i n  the  phase  d e n s i t i e s ,  the  e q u a t i o n s  o f  s t a t e  can be l i n e a r i z e d :  

<Ps>s 
�9 = t + ~ s v  < Pso > s - -  ~ar ( ( T= > s - -  T=o). ( 1 2 )  

< P~0 > 

We assume that the pressure in each phase equals zero for T O = Tao. 

The equation of compatibility of the phase deformations that describes the change in 
the porosity ml can easily be found by differentiation of both sides of (12) with respect to 
the time. It follows from this equation that besides the thermal effects the Maxwell 
stresses in the phases influence the change in porosity. 

Taking the average of the heat conduction equation for the phase a and neglecting 
products of the fluctuations, we have 

k 

h kt k 
+ aa~ ( ns (v=~- -u~)Ts>12]  = vu(m=u~Vz <T~)~)+ a,2(n~.xsvnT~>x~. 

In the absence of phase transitions we set vak= Uk. 

In connection with the fact that the fluid velocity on the pore surface equals the 
velocity of this surface, the heat transfer of the pore surface with fluid occurs by ordinary 
heat conduction. It hence follows that the last term in the right side of (13) is the inter- 

phasal heat transfer Qaz [3]: 
-I 

According to the last boundary condition for temperature (2), the equality Q~Z = --Q2E 
holds. 

Let us turn to the derivation of the averaged Maxwell equations. We determine the mag- 
netic field intensity averaged over the mixture <Hn> by the relationship 

2 

< H ~ > =  ~ ms <H~kS~. 
~ 1  

The induction < B k >  averaged over the mixture is determined analogously. In the gen- 
eral case of a statistically anisotropic medium, the intensity and induction are associated 
by the relationship <Bi>='~eij<HJ>. Here the magnetic permittivity tensor of the mixture 
~cij is assumed a known function of the porosity, density and temperature of the phases, as 
well as of the averaged field <Hk>. 

Averaging the Maxwell equations (2) with respect to the phases and combining, and taking 
account of the boundary conditions, we find an equation for the field <Hi>: 

Vi~ / < H i )  =0 ,  8 i / hVi<Hh)  = 0 .  (14) 

Equations must also be derived to find the magnetic field averaged over the pore volume 
<HI~>I , in the momentum equation for the liquid phase (4). Averaging the Maxwell equations 
(2) with respect to the phase i and transforming the integrals over the interphasal surface 
by using the local coordinate system in the averaging space, with the assumptions enumerated 
earlier taken into account, we find equations for the field <H1i>l: 

m l l V k  < H~ >1 + 4aVh < M~ > ~] + 012 < n~[Blk  + 4~X4ah] > ,~ = O, ( 1 5 )  

ml 81ykvy ( H ] h > l  + ol~ ~]~ (niyHlh>lz  = O. 

The integrals over the interphasal surface in (15) are functions of the arguments 
Vi <H~Y>~ + 4~V~ <MI~>~ and Vy <H1~>1 , respectively, and can be approximated by the first 
terms in their series expansions, analogously to the relationship (9). 
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Let us note that the porosity m:, which varies during filtration, is in (15). 

The magnetic field averaged over phase 2, which is in the solid-phase momentum equation 
(5), is found from the relationship 

< H k m-~ H k 2 > = =  2 [< > - - m l < H ~ > l l .  

It should be noted that since the porosity, magnetic field intensity, and other quanti- 
ties are in all the equations describing the filtration, the whole system of equations must 
be solved to find these quantities. For instance, just some of the Maxwell equations are 
now inadequate for finding the magnetic field. 

The boundary conditions for <H~> and <B~> reduce to the continuity of the tangential 
component of the field <Hi> and the normal component of <Bi> in the case of a nonelec- 
trically conductive medium. 

In conclusion, we note that evaluation of the elasticity coefficients for the matrix 
frame consisting of periodically arranged balls of identical radius is possible, in principle, 
by using the results of solving the Hertz problem for two contiguous spheres [5, p. 45]. 

NOTATION 

Vi, covariant derivative; 0t =0101; <...>, average over the mixture; <..>= , average 
over the phase ~; <>12, average over the interphasal surface; ui, velocity of interphasal 
surface motion; ~2, interphasal surface per unit volume; nai , normal to the interphasal sur- 
face, external for the phase a; v~i , velocity of the medium; ps, density; gi, free-fall 
acceleration; P~ik, stress tensor; Hak, Bak , magnetic field intensity and induction; p:, 
total pressure; Pc:, pressure without the field; n~, viscosity; ce, specific heat; Te, tem- 
perature; gik, metric tensor; ~2, ~2, Lam~ coefficients of the matrix material; hk, dis- 
placement vector in the matrix; 8T, coefficient of thermal expansion; ~=, heat-conduction 
coefficient; {A}, discontinuity in the quantity A on the interphasal surface; Xmij, tensor 
of apparent mass coefficients; Aik , friction coefficient tensor; ml, matrix porosity; m2 = 
i -- m~; m=Aijk~, elastic modulus tensor of the porous matrix frame; K~, multilateral com- 

kl heat conductivity tensor of the phase a; gijk, Levi--Civita tensor; pression modulus; • , 
Nu~, Nusselt number; TE, interphasal boundary temperature; a:, average characteristic pore 
dimension. 
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